Exploring atomistic details of pH-dependent peptide folding.
نویسندگان
چکیده
Modeling pH-coupled conformational dynamics allows one to probe many important pH-dependent biological processes, ranging from ATP synthesis, enzyme catalysis, and membrane fusion to protein folding/misfolding and amyloid formation. This work illustrates the strengths and capabilities of continuous constant pH molecular dynamics in exploring pH-dependent conformational transitions in proteins by revisiting an experimentally well studied model protein fragment, the C peptide from ribonuclease A. The simulation data reveal a bell-shaped pH profile for the total helix content, in agreement with experiment, and several pairs of electrostatic interactions that control the relative populations of unfolded and partially folded states of various helical lengths. The latter information greatly complements and extends that attainable by current experimental techniques. The present work paves the way for new and exciting applications, such as the study of pH-dependent molecular mechanism in the formation of amyloid comprising peptides from Alzheimer's and Parkinson's diseases.
منابع مشابه
Structural details, pathways, and energetics of unfolding apomyoglobin.
Protein folding is often difficult to characterize experimentally because of the transience of intermediate states, and the complexity of the protein-solvent system. Atomistic simulations, which could provide more detailed information, have had to employ highly simplified models or high temperatures, to cope with the long time scales of unfolding; direct simulation of folding is even more probl...
متن کاملEffects of Dimethyl Sulfoxide and Mutations on the Folding of Abeta(25-35) Peptide: Molecular Dynamics Simulations
The 25-35 fragment of the amyloid β (Aβ) peptide is a naturally occurring proteolytic by-product of its larger parent molecule that retains the amyloid characteristics and toxicity of the full length parent molecule. Aggregation of this peptide occurs rapidly in aqueous solutions and thus characterization of its folding process is very difficult. In the present study, early stages of Aβ(25–35) ...
متن کاملExploring the Folding Pathways of Proteins through Energy Landscape Sampling: Application to Alzheimer's b-amyloid Peptide
Internet Electron. J. Mol. Des. 2003, 1, 000-000 Abstract The determination of the folding mechanisms of proteins is critical to understand the topological change that can propagate Alzheimer's and prion diseases. The associated folding time scale generally precludes the use of molecular dynamics simulations. Here we present the details of the activation-relaxation simulations using the generic...
متن کاملInsights from Coarse-Grained Gō Models for Protein Folding and Dynamics
Exploring the landscape of large scale conformational changes such as protein folding at atomistic detail poses a considerable computational challenge. Coarse-grained representations of the peptide chain have therefore been developed and over the last decade have proved extremely valuable. These include topology-based Gō models, which constitute a smooth and funnel-like approximation to the fol...
متن کاملFolding and insertion thermodynamics of the transmembrane WALP peptide.
The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA)n (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 49 شماره
صفحات -
تاریخ انتشار 2006